An Algebraic Perspective on Multivariate Tight Wavelet Frames. II
نویسنده
چکیده
Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of such polynomial sets allows us to improve the known upper bounds on the number of frame generators derived from box splines. In the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S. W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.
منابع مشابه
A real algebra perspective on multivariate tight wavelet frames
Recent results from real algebraic geometry and the theory of polynomial optimization are related in a new framework to the existence question of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) from [33] are interpreted in terms of hermitian sums of squares of certai...
متن کاملOn Dual Wavelet Tight Frames
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton’s result on wavelet tight frames in L(IR) is generalized to the n-dimensional case. Two ways of constructing certain dual wavelet tight frames in L(IR) are suggested. Finally examples of smooth wavelet tight frames in L(IR) and H(IR) are provided. In...
متن کاملConstruction of Multivariate Compactly Supported Tight Wavelet Frames
Two simple constructive methods are presented to compute compactly supported tight wavelet frames for any given refinable function whose mask satisfies the QMF or sub-QMF conditions in the multivariate setting. We use one of our constructive methods in order to find tight wavelet frames associated with multivariate box splines, e.g., bivariate box splines on a three or four directional mesh. Mo...
متن کاملPopular Wavelet Families and Filters and Their Use
Glossary 5 Introduction 6 Definition of Wavelets 7 Definition of Filters 8 Multi-Resolution Analysis 9 Wavelet Decomposition and Reconstruction 10 Refinable Functions 11 Compactly Supported Orthonormal Wavelets 12 Parameterization of Orthonormal Wavelets 13 Biorthogonal Wavelets 14 Prewavelets 15 Tight Wavelet Frames 16 Tight Wavelet Frames over Bounded Domain 17 q-Dilated Orthonormal Wavelets ...
متن کاملThe Method of Virtual Components in the Multivariate Setting
We describe the so-called method of virtual components for tight wavelet framelets to increase their approximation order and vanishing moments in the multivariate setting. Two examples of the virtual components for tight wavelet frames based on bivariate box splines on three or four direction mesh are given. As a byproduct, a new construction of tight wavelet frames based on box splines under t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014